

Atomic Structure and Chemical Bonding

SWAYAM Prabha Course Code NPTEL-S7

PROFESSOR'S NAME		Prof. K. Mangala Sunder	
DEPARTMENT		Chemistry	
INSTITUTE		IIT Madras	
COURSE OUTLINE		The course is a rigorous introduction to principles of quantum chemistry and also describes all mathematical details at the introductory level, accurately however. It is limited to elementary model problems, angular momentum and spin and an introduction to chemical bonding in one and two-electron systems.	
S. No	Module ID/ Lecture ID		Lecture Title/Topic
1 Lecture 1			Introduction
2			Elementary Mathematical Functions
Lecture 2			Used in Our Course

	Lecture 2	Used in Our Course
3		Schrodinger Equation: Particle in a One
	Lecture 3	Dimensional Box
4		Particle in a One dimensional Box:
	Lecture 4	Probabilities and Expectation Values
5		Elementary Mathematics: Introduction
	Lecture 5	to Matrix Algebra - Part 1
6		Elementary Mathematics: Introduction
	Lecture 6	to Matrix Algebra - Part 2
7		Elementary Mathematics: Matrix
	Lecture 7	Eigenvalues and Eigenfunctions: Part I
8		Elementary Mathematics: Matrix
	Lecture 8	Eigenvalues and Eigenfunctions: Part II
9		Particle in a Two Dimensional Box
	Lecture 9	(Infinite Barrier)
10	Lecture 10	Heisenberg's Uncertainty Principle

11		Expectation Values and Postulates in
	Lecture 11	Quantum Mechanics
12		Problems and Solutions for Particle in
	Lecture 12	One and Two Dimensional Boxes
13		Linear Vector Spaces: Matrix
	Lecture 13	Representations
14		Linear Vector Spaces and Operators:
	Lecture 14	Dirac's Bracket Notation
15		Simple Harmonic Oscillator: Classical
	Lecture 15	Hamiltonian
16		Simple Harmonic Oscillator: Quantum
	Lecture 16	Mechanical Solutions
17		Simple Harmonic Oscillator: Wave
		Functions, Probabilities and Average
	Lecture 17	Values
18		Simple Harmonic Oscillator: Average
	Lecture 18	Values for Position and Momentum
19		Particle on a Ring [.] The Quantum Model
	Lecture 19	
20		Particle on a Ring: Expectation Values
	Lecture 20	for Angular Momentum
21	Lecture 21	Coordinate Transformation
22		Problems and Solutions for Harmonic
22	Lecture 22	
23		Hydrogen Atom: The Hamiltonian in
25	Lecture 23	Spherical Polar Coordinates
24		Hydrogen Atom: Separation of the
27	Lecture 24	Schrä¶dinger Equation
25		Hydrogen Atom: Radial and Angular
	Lecture 25	Solutions and Animations Part I
26		Hydrogen Atom: Radial and Angular
	Lecture 26	Solutions and Animations Part II
27		Hydrogen Atom: Radial Solutions and
	Lecture 27	Probabilities
28		Power Series Method for Differential
	Lecture 28	Equation - I
29		
	Lecture 29	Hermite䀙s Differential Equation
30		Legendre and Associated Legendre
	Lecture 30	Equation

31	Lecture 31	Born-Oppenheimer Approximation
32	Lecture 32	Introduction to Angular Momentum
33	Lecture 33	Spin ½ Angular Momentum
34	Lecture 34	Spin Angular Momentum and Coupling of Two Spin-1/2 Angular Momenta
35	Lecture 35	Coupling of Two Angular Momenta
36	Lecture 36	Video Tutorial for Hermite polynomials and hydrogen atom Part 1
37	Lecture 37	Video Tutorials Part 2
38		Variational Principle in Quantum Chemistry: Linear superposition
	Lecture 38	Principle
39		Introduction to Variational Principle in
	Lecture 39	Quantum Chemistry
40		Variational Method: Method of
	Lecture 40	Lagrange Multipliers
41		Hydrogen Molecule Ion: The Molecular
	Lecture 41	Orbital Method
42		Hydrogen Molecule Ion: Calculations
	Lecture 42	and Results
43	Lecture 43	Hydrogen Molecule: The Valence Bond Method
44		Hydrogen Molecule: Calculations and
	Lecture 44	Molecular Orbital Method
45		Video Tutorials on Angular Momentum
		(Orbital and Spin) and Variational
	Lecture 45	Method Part 1
46		Video Tutorials on Angular Momentum
		(Orbital and Spin) and Variational
	Lecture 46	Method Part 2
47		Introduction to Quantum Mechanical
	Lecture 47	Perturbation Theory
48		First Order Time Independent
		perturbation Theory for Non-
	Lecture 48	Degenerate states

49		First and Second Order Time
		Independent Perturbation Theory for
	Lecture 49	Non-Degenerate States
50		First and Second Order Time
		Independent Perturbation Theory:
	Lecture 50	Simple Examples
51		Time Independent Perturbation Theory
	Lecture 51	for Degenerate States: First Order
52		General MO method for Homonuclear
	Lecture 52	Diatomic Molecules
53		General MO method for Heteronuclear
	Lecture 53	Diatomic Molecules
54		Introduction to Hybridization and
	Lecture 54	Valence Bond for Polyatomic Molecules
55	Lecture 55	Huckel Molecular Orbital Theory I

References if Any:

1. Quantum Chemistry by Donald A. McQuarrie, Viva Books, 2011, Indian Edition.

2. Quantum Chemistry by R. K. Prasad, New Age Publications, 2011.

3. Mathematics for Physical Chemistry by D. A. McQuarrie, University Science Books, 2008

Instructor Contact Details:

Dr. K. Mangala Sunder, Ph. D. (McGill)

Professor and Head, Department of Chemistry and

Chief Coordinator, DTH SWAYAM Prabha, Ministry of Human Resource Development (2016-)

National Web Courses Coordinator, NPTEL, Ministry of HRD (2003 - 2015)

Indian Institute of Technology Madras, Chennai 600036

Email: mangal@iitm.ac.in; 044-22574220; mangalasunderk@gmail.com